Call for Abstract

33rd International Conference on Vaccines and Immunization, will be organized around the theme “New innovations in the field of vaccines and immunology”

Vaccines and Immunization is comprised of keynote and speakers sessions on latest cutting edge research designed to offer comprehensive global discussions that address current issues in Vaccines and Immunization

Submit your abstract to any of the mentioned tracks.

Register now for the conference by choosing an appropriate package suitable to you.

Infectious diseases are responsible for approximately 25% of global mortality, especially in children aged younger than 5 years. Much of the burden of infectious diseases could be alleviated if appropriate mechanisms could be put in place to ensure access for all children to basic vaccines, regardless of geographical location or economic status. In addition, new safe and effective vaccines should be developed for a variety of infections against which no effective preventive intervention measure is either available or practical. The public, private, and philanthropic sectors need to join forces to ensure that these new or improved vaccines are fully developed and become accessible to the populations in need as quickly as possible


Malaria continues to claim an estimated 2 to 3 million lives annually and to account for untold morbidity in the approximately 300 to 500 million people infected annually. Malaria is considered a re-emerging disease, due largely to the spread of drug-resistant parasite strains, decay of health-care infrastructure and difficulties in implementing and maintaining vector control programs in many developing countries. Four species of protozoan parasites cause malaria in humans: Plasmodium falciparum, P. vivax, P. malariae, and P. ovale. P. falciparum is responsible for the majority of deaths and most of the severe forms of disease, including cerebral malaria. 2 billion people latently infected with M. tuberculosis 5-10% infected people progress to disease 9 million new TB cases each year 1.5 million TB deaths each year Equivalent to 20 passenger aircraft crashes each day. TB is transmitted by adults with cavitatory disease HIV infected people carry greater burden of disease. Highest risk of progression from TB infection to active disease, and worst TB morbidity and mortality, compared to older children and adults.


The most important breakthroughs of the past century involved the development of vaccines to protect against viruses: smallpox, polio, hepatitis, human papillomavirus (HPV), and even chickenpox. But one virus remains elusive to those seeking to create a vaccine to guard against it: HIV. Getting vaccinated early, before sexual exposure, is also effective in preventing certain types of STIs. Vaccines are available to prevent human papillomavirus (HPV), hepatitis A and hepatitis B.


Vaccines play a vital role in the healthcare department especially for a growing children.  A vaccine is a biological preparation that provides active acquired immunity to a particular disease. Totally 26 Vaccines are available authorized by the WHO. Different Vaccines are Measles vaccinesRubella vaccinesCholera vaccinesMeningococcal disease vaccinesInfluenza vaccinesDiphtheria vaccinesMumps vaccinesTetanus vaccinesHepatitis A vaccinesPertussis vaccinesTuberculosis vaccinesHepatitis B vaccinesPneumoccocal disease vaccinesTyphoid fever vaccinesHepatitis E vaccinesPoliomyelitis vaccinesTick-borne encephalitis vaccinesHaemophilus influenzae type b vaccinesRabies vaccinesVaricella and herpes zoster vaccines,  Human papilloma-virus vaccinesRotavirus gastroenteritis vaccinesYellow fever vaccinesJapanese encephalitis vaccinesMalaria vaccines and  Dengue fever vaccines.  Vaccination is the most effective method of preventing infectious diseases. This Conference brings out the knowledge about Highlights of latest technologies and innovations in Vaccines and Immunization.


Increasingly, more diseases are becoming vaccine preventable, but maintaining community and provider acceptance demands that the number of injections doesn’t increase. Combination conjugate vaccines represent an inevitable and important advance. This paper reviews the efficacy and safety of combination conjugate vaccines, including immunological mechanisms underlying interactions among vaccine epitopes, the role of immunological memory, and correlates of immunity. Specific attention is given to the experience with combination vaccines against each of Haemophilus influenzae type b, Streptococcus pneumoniae and Neisseria meningitidis. The implications of these findings for different communities are discussed, key areas for further research identified and implications for post-licensure monitoring addressed.


Scientists take many approaches to designing vaccines against a microbe. These choices are typically based on fundamental information about the microbe, such as how it infects cells and how the immune system responds to it, as well as practical considerations, such as regions of the world where the vaccine would be used. A DNA vaccine against a microbe would evoke a strong antibody response to the free-floating antigen secreted by cells, and the vaccine also would stimulate a strong cellular response against the microbial antigens displayed on cell surfaces. The DNA vaccine couldn’t cause the disease because it wouldn’t contain the microbe, just copies of a few of its genes. In addition, DNA vaccines are relatively easy and inexpensive to design and produce. Inactivated vaccines can be composed of either whole viruses or bacteria, or fractions of either. Fractional vaccines are either protein-based or polysaccharide-based.


Travel vaccines are recommended to provide protection against diseases endemic to the country of origin or of destination. They are intended to protect travellers and to prevent disease spread within and between countries. There is no single vaccination schedule that fits all travellers. Each schedule must be individualized according to the traveller’s previous immunizations, health status and risk factors, the countries to be visited, the type and duration of travel, and the amount of time available before departure.

Edible vaccines hold great promise as a cost-effective, easy-to-administer, easy-to-store, fail-safe and sociocultural readily acceptable vaccine delivery system, especially for the poor developing countries. It involves introduction of selected desired genes into plants and then inducing these altered plants to manufacture the encoded proteins.


Immunization against diseases such as Polio, Tetanus, Diphtheria, and Pertussis saves the lives of approximately three million children each year. Immunization also prevents many more millions from suffering debilitating illness and lifelong disability. Globally, approximately 132 million babies need to be fully immunized each year. In order to meet this need, immunization systems must have adequate resources, trained and motivated staff, and ample vaccines and syringe supplies.


Patients with immune-mediated inflammatory diseases (IMID) such as RA, IBD or psoriasis, are at increased risk of infection, partially because of the disease itself, but mostly because of treatment with immune-modulatory or immunosuppressive drugs. In spite of their elevated risk for vaccine-preventable disease, vaccination coverage in IMID patients is surprisingly low. Although the reduced quality of the immune response in patients under immunotherapy may have a negative impact on vaccination efficacy in this population, adequate humoral response to vaccination in IMID patients has been demonstrated for Hepatitis B, Influenza and Pneumococcal vaccination.